Current Projects

  • Description

    Network monitoring is of paramount importance to both network operators and researchers, to the point that it has recently become a major research area. However, network monitoring still suffers from fundamental problems that leave its rigorousness behind more traditional research fields, such as other experimental disciplines within physics or biology. Most scientific works in the field of network monitoring are evaluated using private, undisclosed data sets. Nevertheless, disclosure of experimental data is a basic principle of the scientific method that enables experiment reproducibility, independent validation and cross-comparison of research results. For this reason, we think that the credibility of research works in this area overly relies on the scientific community bona fide. Our initial hypothesis is that two fundamental barriers have to be overcome in order to increase the rigorousness of this scientific area. First, the mere acquisition of reference data sets is extremely challenging from a technological viewpoint due to the ever-increasing network speeds. Second, sociological reasons discourage their publication, primarily due to privacy concerns. Both the technological and sociological barriers are currently perceived to be insurmountable, which prevents the use of common data sets in scientific works and impedes experiment reproducibility. The main objective of this project is to investigate the fundamental research challenges associated to these two barriers. On the one hand, this project will explore novel network monitoring and traffic measurement techniques in order to address the technological difficulties. Main topics of research in this direction will include complex resource management techniques, such as load shedding and distribution, traffic sampling and specialized streaming algorithms for traffic processing and analysis. On the other hand, this project will propose a novel data sharing paradigm that overcomes the sociological barriers. The research carried out in this project will result in a completely novel evaluation framework for network monitoring research based on what we call the “code-to-the-data” model. This model will enable reproducibility, validation and comparison of scientific works without requiring full disclosure of traffic data sets, thus avoiding most privacy concerns involved in dataset publication. Ultimately, the new monitoring and data sharing paradigm resulting from this project will provide a realistic solution to set the use of common data sets as a standard requirement for scientific publication, as it is in other research areas.


    Duration

    36 months


    Participants

    UPC, EPO: Tecsidel, CESCA


    Contract number

    TEC2011-27474

  • Description

    Mobility is unnatural to today’s Internet architecture, primarily due to overloaded IP address semantics. Several schemes address this issue by decoupling the location of an endpoint from its identity. Such location/identity separation inherently provides services fundamental to the future Internet including seamless mobility, multihoming, and traffic engineering. Of the various location/identity separation schemes, the Location/ID Separation Protocol (LISP) (proposed by Cisco Systems Inc., and under standardization at IETF) has a unique position: LISP is incrementally deployable, it does not require changes to transport/application implementations, and it is already under active deployment (see http://www.lisp4.net). Basically, LISP proposes two different types of addresses: Endpoint Identifiers (EIDs) and Routing Locators (RLOCs). EIDs identify hosts, and are assigned independently of the network topology while RLOCs identify network attachment points, and are used for routing. This allows EIDs to remain unchanged even if a topological change, such as a handover, occurs. Thus, LISP’s innate support for location/identity separation makes LISP well suited for mobility. Indeed, the LISP mobility protocol (LISP-MN) has been recently proposed. LISP-MN offers many advantages in front of traditional mobility schemes such as Mobile IP. On the one hand LISP´s separation of control and data planes avoids mobility provider lock-in, and LISP-MN clients can freely roam among providers (usually ISPs). On the other hand, LISP-MN provides native support for multihoming, load balancing and route optimization, this are important aspects for the future mobile clients. However and traditionally, the Internet architecture has evolved independently of cellular networks (3GPP). Nowadays these cellular networks are converging to an all-IP network, and their new architecture must be gracefully accommodated in the future Internet architecture. This imposes a set of important challenges. In this context, we expect that LISP-MN will play a crucial role. LISP-MN provides a higher level of mobility (at the network layer) and mobile clients can freely roam across providers. The main objectives of the NAME project are (i) Research coherent architectures for the future converged cellular and Internet networks and (ii) Research and design advanced services such as content distribution and live streaming for LISP-MN.


    Duration

    36 months


    Participants

    CTTC SYMBIOSYS TEC2011-29700-C02-01 - UPC NAME TEC2011-29700-C02-02 - EPO: CISCO, CESCA


    Contract number

    TEC2011-29700-C02-02


    More Info

    Project Website: http://www.cba.upc.edu/name

  • Description

    The main objective of the LIGHTNESS project is the design, implementation and experimental evaluation of a high-performance network infrastructure for data centres, where innovative photonic switching and transmission solutions are deployed. Harnessing the power of optics will enable data centres to effectively cope with the unprecedented demand growth to be faced in the near future, which will be driven by the increasing popularity of computing and storage server-side applications in the society. Indeed, the deployment of optical transmission systems leveraging Dense Wavelength Division Multiplexing (DWDM) allows the transmission of more than a hundred of wavelength channels operating at 10, 40, 100 Gb/s and beyond. This effectively results in “unlimited” bandwidth capacities of multiple Terabit/s per fibre link, which can be efficiently utilized through next-generation all-optical switching paradigms like Optical Circuit Switching (OCS) or Optical Packet Switching (OPS). In this context, LIGHTNESS will join efforts towards the demonstration of a high-performance all-optical hybrid data plane for data centre networks, combining both OCS and OPS equipment to implement transport services tailored to the specific applications’ throughput and latency requirements. To this goal, an OPS node suitable for intra- data centre connectivity services will be developed and prototyped during the project, together with an enhanced Top of the Rack (TOR) switch seamlessly connecting servers in each rack to the hybrid OCS/OPS inter-cluster network. As an additional achievement of LIGHTNESS, the OCS/OPS inter-cluster network will be empowered with a network control plane able to dynamically provision flexible connectivity services in the hybrid OCS/OPS data centre network. Such a control plane will also be developed and prototyped for integration in the final LIGHTNESS demo throughout the project.


    Duration

    36


    Contract number

    FP7-318606

  • Description

    PRISTINE intends to: 1) Design, develop and implement the innovative internals of the Recursive InterNetwork Architecture (RINA) clean-slate architecture that include the programmable functions for: security of content and application processes, supporting QoS and congestion control in aggregated levels, providing protection and resilience, facilitating more efficient topological routing, and multi-layer management for handling configuration, performance and security. 2) Demonstrate the applicability and benefits of this approach and its built-in functions in use-cases driven by the end-users, service providers and equipment vendors in the consortium. This will ensure that the applications and tools we develop will be deployable by providers, and have a greater potential for future exploitation.


    Duration

    30 month


    Participants

    CCABA, i2Cat


    Contract number

    FP7-619305

  • Description

    COSIGN proposes a new DC architecture empowered by advanced optical technologies and will demonstrate novel solutions capable of sustaining the growing resource and operational demands of next generation DC Networks. COSIGN aims to move away from today's vendor specific, manually controlled, performance and scale limited DCs towards scalable DC solutions able to support future-proof dynamic, ondemand, low-latency, energy efficient and ultra-high bandwidth DC solutions.


    Duration

    36 month


    Participants

    CCABA


    Contract number

    FP7-619572

  • Description

    El eco-sistema ICT ha cambiado rápidamente durante los últimos años. Servicios “en la nube”, tecnologías móviles y redes sociales están creando nuevos hábitos de comunicación, y están requiriendo cambios en la arquitectura misma de las redes que soportan estos servicios para poder permitir un crecimiento escalable, y al mismo tiempo un alto nivel dinamismo en la conectividad.

    El proyecto SUNSET tiene como principal objetivo superar los “cuellos de botella” de las actuales redes y proporcionar soluciones para una futura Sociedad Digital sostenible, allanado el camino a innovadores servicios TIC “en la nube”, y se favorece un uso sostenible de estos servicios por sectores económicos maduros, mejorando su competitividad mediante tecnologías “cloud”-TIC. Más específicamente, SUNSET propone una nueva arquitectura incluyendo todos los segmentos (acceso, metro, troncal) y red de centro de datos, gracias a técnicas ópticas avanzadas y tecnologías de Redes Definidas por Software (SDN), capaces de responder a las crecientes demandas de recursos de las redes de nueva generación.

    SUNSET presta atención al corto y al largo plazo. En el corto plazo, SUNSET aprovechará una adecuada integración de tecnologías ópticas avanzadas y SDN para mejorar el rendimiento global, la escalabilidad y la gestión de la red y los recursos IT, proporcionando una racionalización del proceso de despliegue y asignación de la diferentes cargas de trabajo de la red, en el actual entorno dinámico, multi-propietario, y manteniendo un uso eficaz de los recursos. SDN se define como un entorno de control para la programación de funciones de red y protocolos gracias a la separación del plano de datos y el plano de control, que actualmente están integrados verticalmente en los equipos de red. La separación del plano de control y de datos hace que SDN sea la tecnología adecuada para que un plano de control integrado pueda operar tecnologías heterogéneas utilizadas en diferentes capas de la red (la capa óptica, la capa IP) y los centros de datos.

     

    SUNSET aborda como objetivos intermedios:

    - La investigación y desarrollo de técnicas de modulación y de procesado de señal para conseguir una mejora en un factor 10x en la tasa de datos en redes metro-acceso utilizando dispositivos comerciales de bajo coste.

    - El desarrollo de nodos SDN implementando multiplexación por longitud de onda y espacial, así como controladores SDN capaces de gestionar los equipos ópticos.

    - El diseño y el desarrollo de entornos de orquestación basados en SDN, monitorización basada en SDN, algoritmos de optimización de recursos, e investigación en futuras tecnologías SDN.

     

    Alcanzando estos hitos, SUNSET busca proporcionar soluciones sostenibles ofreciendo una infraestructura de red unas 10 veces más eficiente en consumo de energía y rendimiento.

    A largo plazo, SUNSET también investiga ulteriores factores de mejora en consumo de energía y rendimiento, de 100 a 1000 en el medio y largo plazo, mediante tecnologías híbridas fotónicas e inalámbricas, encaminadas al “Data-Centres-in-a-Box”, gracias a las propiedades de materiales nanoestructurados.

    SUNSET reúne una especial combinación de expertos y recursos para aportar soluciones escalables y duraderas para la infraestructura de las redes en su conjunto.

    Para conseguir estos objetivos, SUNSET coordina la investigación en 3 de las 6 Tecnologías Facilitadoras Esenciales para este proyecto: Tecnologías de la Información y Comunicaciones, Fotónica y Nanotecnología.

     


    Duration

    01/07/2015 - 30/06/2018 (36 M)


    Contract number

    TEC2014-59583-C2-2-R / TEC2014-59583-C2-1-R

  • Description

    A number of studies have pointed out on the dramatic increase of Internet traffic exchanged worldwide, around 23% accumulated per year anual, estimated to reach 168 Exabytes exchanged per month by 2019, approximately 22 GB per person. Such an increase is based on several reasons: on one hand the explosive growth of mobile devices along with their popularity and low-cost (estimated 20 billion by 2020); on the other hand the rise and popularity of new interactive services with strict high-bandwidth low-delay requirements, namely video on-demand, online gaming, P2P file sharing, etc. On top of these, the rise of Smart Cities, Internet of Things, Cloud Computing and Big Data suggest that such a percentage of traffic increase may have been underestimated. ElasticNetworks will address the above challenges and will focus on a number of novel approaches for the design of the Future Internet. In particular, ElasticNetworks will contribute to a holistic redesign of the transport network towards a more agile, flexible, programmable Elastic Network, yet with low operation, deployment and maintenance cost, and energy efficient. This will be a superior network with respect to today's in terms of performance, capable of provisioning network capacity where needed, with a dynamic and mobile network with high bandwidth granularity, capable of dealing with the advent of the all-connected smart world. ElasticNetworks will contribute to such a technological revolution in which the network becomes a single programmable entity, starting from the Data Center supporting the Cloud and ending in the very last user's or thing's device. KEY WORDS: Elastic Optical Networks; Software Defined Networking; Internet of Things; Cloud and Fog Computing


    Duration

    01/10/2015-30/09/2017


    Participants

    UC3M, UPC CCABA, UdG BCDS, UPCT GIRTEL, UVa GCO, CTTC ONS, UPC CRAXX, UPM GIROS, UNebrija, UPV GIRBA


    Contract number

    TEC2015-71932-REDT


    More Info

    Project Website: http://www.elasticnetworks.org/